Adiabatic hyperspherical representation for the three-body problem in two dimensions
نویسندگان
چکیده
منابع مشابه
Hyperspherical Coulomb spheroidal representation in the Coulomb three-body problem
The new representation of the Coulomb three-body wave function via the well-known solutions of the separable Coulomb two-centre problem φj(ξ, η) = Xj(ξ)Yj(η) is obtained, where Xj(ξ) and Yj(η) are the Coulomb spheroidal functions. Its distinguishing characteristic is the coordination with the boundary conditions of the scattering problem below the three-particle breakup. That is, the wave funct...
متن کاملCalculation of resonances in the Coulomb three-body system with two disintegration channels in the adiabatic hyperspherical approach
The method of calculation of the resonance characteristics is developed for the metastable states of the Coulomb three-body (CTB) system with two disintegration channels. It is based on the numerical solution of the scattering problem in the framework of the adiabatic hyperspherical (AHS) approach. The energy dependence of K-matrix in the resonance region is calculated with the use of the stabi...
متن کاملAdiabatic expansion approximation solutions for the three-body problem
The motion of a muon in two centers coulomb field is one of the interesting problems of quantum mechanics. The adiabatic expansion method is powerful approach to study the muonic three-body system. In this investigation the three-body problem is studied for shortrange interactions. Bound states and energy levels of this system were calculated and compared with their Born-Oppenheimer method coun...
متن کاملThree-body halos in two dimensions
A method to study weakly bound three-body quantum systems in two dimensions is formulated in coordinate space for short-range potentials. Occurrences of spatially extended structures (halos) are investigated. Borromean systems are shown to exist in two dimensions for a certain class of potentials. An extensive numerical investigation shows that a weakly bound two-body state gives rise to two we...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2014
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.90.042707